Progressive Reinforcement Learning with Distillation for Multi-Skilled Motion Control

نویسندگان

  • Glen Berseth
  • Cheng Xie
  • Paul Cernek
  • Michiel van de Panne
چکیده

Deep reinforcement learning has demonstrated increasing capabilities for continuous control problems, including agents that can move with skill and agility through their environment. An open problem in this setting is that of developing good strategies for integrating or merging policies for multiple skills, where each individual skill is a specialist in a specific skill and its associated state distribution. We extend policy distillation methods to the continuous action setting and leverage this technique to combine expert policies, as evaluated in the domain of simulated bipedal locomotion across different classes of terrain. We also introduce an input injection method for augmenting an existing policy network to exploit new input features. Lastly, our method uses transfer learning to assist in the efficient acquisition of new skills. The combination of these methods allows a policy to be incrementally augmented with new skills. We compare our progressive learning and integration via distillation (PLAID) method against three alternative baselines.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Multi-skilled Motion Control

Deep reinforcement learning has demonstrated increasing capabilities for continuous control problems, including agents that can move with skill and agility through their environment. An open problem in this setting is that of developing good strategies for integrating or merging policies for multiple skills, where each individual skill is a specialist in a specific skill and its associated stat...

متن کامل

Knowledge Transfer for Deep Reinforcement Learning with Hierarchical Experience Replay

The process for transferring knowledge of multiple reinforcement learning policies into a single multi-task policy via distillation technique is known as policy distillation. When policy distillation is under a deep reinforcement learning setting, due to the giant parameter size and the huge state space for each task domain, it requires extensive computational efforts to train the multi-task po...

متن کامل

Using BELBIC based optimal controller for omni-directional threewheel robots model identified by LOLIMOT

In this paper, an intelligent controller is applied to control omni-directional robots motion. First, the dynamics of the three wheel robots, as a nonlinear plant with considerable uncertainties, is identified using an efficient algorithm of training, named LoLiMoT. Then, an intelligent controller based on brain emotional learning algorithm is applied to the identified model. This emotional l...

متن کامل

Using communication to increase learning in a hostile multi-agent environment

Distillations utilize multi-agent based modelling and simulation techniques to study warfare as a complex adaptive system at the conceptual level. The focus is placed on the interactions between the agents to facilitate study of cause and effect between individual interactions and overall system behaviour. Current distillations don’t utilize machine-learning techniques to model the cognitive ab...

متن کامل

Policy Distillation

Policies for complex visual tasks have been successfully learned with deep reinforcement learning, using an approach called deep Q-networks (DQN), but relatively large (task-specific) networks and extensive training are needed to achieve good performance. In this work, we present a novel method called policy distillation that can be used to extract the policy of a reinforcement learning agent a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • CoRR

دوره abs/1802.04765  شماره 

صفحات  -

تاریخ انتشار 2018